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Abstract—Mobile robot teams are increasingly deployed in various
applications involving remote operations in unstructured environments
that do not support wireless network infrastructures. We propose a
class of protocols based on the connectivity-through-time concepts that
exploit the robot movements to extend the traditional notions of net-
work connectivity. These protocols enable the formation of ad hoc net-
works of mobile robots without the infrastructure of access points by
utilizing the robots as routers. These protocols are implemented as a
collection of daemons that track connectivity changes, compute single
and multiple hop connectivity, route the packets via robots with suit-
able buffering, and adapt the transport parameters to the connection
characteristics. The implementation employs UDP with window-based
flow control that is tuned to the nature of connections. We present ex-
perimental performance results based on our implementation on robot
teams to illustrate the salient features of this approach.

Keywords— Mobile robot teams, wireless networks, connectivity-
through-time

I. INTRODUCTION

MO bile robot teams are being increasingly employed
in remote and unstructured environments for opera-

tions such as terrain mapping and surveillance [1]. Such
robot teams offer powerful capabilities. For example, a robot
team can be deployed (perhaps air-dropped) to build a radi-
ation map of an urban area suspected of nuclear or chemical
contamination before human operators are allowed into the
area. In another application, the robot team can coopera-
tively search for a target (such as a human in need of med-
ical attention) in an area unsafe for humans. Typically, in
these applications there is a need for the robots to effectively
communicate to coordinate their activities as well as to com-
bine the gathered information. The networking needs for this
class of applications are quite specific and are not adequately
addressed by the existing wireless ad hoc networking tech-
nologies, which are often the off-shoots of Internet-based
approaches.

To describe the operational space of our networks, we
present an example that is prototypical to the above class
of applications. Consider that a team of mobile robots is de-
ployed in a remote building to cooperatively scan the floors
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of the terrain for radiation levels by combining the sen-
sor information. The robots are equipped with off-the-shelf
wireless cards and support conventional TCP/IP stack. The
building consists of steel reinforcements, which could af-
fect the radio connectivity in an unpredictable manner. The
radiation levels in the building are unknown and hence hu-
mans are not allowed into the building until it is completely
scanned and found to be safe.

There is a wide spectrum of applications in which the
wireless networks are deployed, ranging from campus ac-
cess to robot teams to sensor networks [9]. The networking
technologies, including hardware components and software
modules, could be quite specific to the application. In cam-
pus networks, an infrastructure is deployed so that the node
movements are covered by the access points [12]. In the
sensor networks area, various types of scenarios call for dif-
ferent type of wireless networks [3]. In ad hoc wireless net-
works the challenge is to form and operate a network without
the infrastructure. In dynamic networks the additional chal-
lenge is to cope with the changes in network connectivity.
Several network protocols have been developed for various
sensor network scenarios (see [2] and references therein).
While robot teams can be considered a special case of sen-
sors networks, their specific considerations require a closer
inspection of the connectivity and transport performance is-
sues. In particular, the latter has received very little attention
since a vast majority of works focus on the connectivity is-
sues alone.

The specific class of wireless ad hoc networks needed for
the operation of mobile robot teams in the above scenario
lead to the following considerations.
• Small and mobile robot teams: We consider teams of no
more than ten mobile robots which cooperatively perform
a task. Its primary focus is to execute a cooperative mis-
sion, and the movements of the robots are not tasked exclu-
sively for communication purposes, i.e., network connectiv-
ity plays a secondary role to primary mission of the robots.
Thus the methods designed for dense swarm type teams or
stationary networks typical of sensor networks are not ade-
quate here [2].
• No infrastructure: The robots operate over a wireless net-
work in areas that are typical indoor or urban environments.
In the above scenario, it is not feasible to manually setup a
network of access points before the robots are put into op-
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Fig. 1. Snapshots of a network of three nodes at times t1, t2 and t3.

eration. The radio connectivity is highly dynamic and un-
predictable due to the unstructured nature of the terrain and
robot movements. As a result the connectivity is sparse since
the robots are few and could be widely dispersed.
• No special hardware: We consider that the robots are
equipped with IEEE 802.11 wireless cards, and no special
communication hardware is available. The operating system
is capable of executing socket-based codes.
These considerations are motivated by the current state of the
art in commercially available mobile robots and networking
technologies that can be deployed under short time frames.

In existing commercial mobile robot networks it is com-
mon to employ Internet wireless network technologies, typ-
ically IEEE 802.11 wireless cards and default TCP/IP stack.
Typically the wireless cards are configured in the default in-
frastructure mode wherein the robots communicate exclu-
sively through the access points. Indeed, a backbone of the
access points is needed to connect various robots, which is
not feasible in our case. The 802.11 cards can be operated in
ad hoc mode in which case the robots that are within the ra-
dio range can communicate with each another but their con-
nectivity is restricted to pairs that are within the radio range.
While the multi-hop connectivity can be achieved in recent
Linux kernels using IP forwarding, such method is effective
only when source and destination robots are connected (via
single or multiple hops) for the entire duration of message
transmission. In particular, such approach does not exploit
the connectivity gains due to robot movements.

Apart from the technological considerations, these robot
networks also involve certain conceptual issues that are not
main stream in current networking technologies, which are
mostly (not all) Internet-based. Typically, the connectivity
changes are treated as aberrations and are handled as excep-
tions. On the other hand, in the above scenarios the con-
nectivity changes are integral parts of the operation. More
importantly, if suitable protocols are employed, the connec-
tivity changes can actually improve the network throughput
as analytically shown in [4]. We show that the connectivity-
through-time concept provides a way to conceptualize such
phenomenon and to design protocols to exploit it. This con-
cept was originally proposed in [10] and implemented in a
working protocol for MS Windows operating system in [11]

t 1 t 2 t 3

Fig. 2. G(t) varies in time.

to support group meeting applications. The protocol pro-
posed in this paper is based on a similar basic concept. But
several components are redesigned for better performance
tailored to the robot teams, and additional transport controls
are added to achieve better throughputs.

The proposed implementation called CTIME of this pro-
tocol consists of three main parts. First, the path compu-
tation part updates the connectivity information from peri-
odic messages from nearby nodes. Second, the routing part
sends the packets to various nodes depending on the con-
nectivity to the destination. Third, the transport part handles
the various sending rates and duplicate packets. Concep-
tually this method is a combination of reactive and proac-
tive approaches [9] in that it uses the former for routing
along currently reachable destinations and the latter other-
wise. While flooding is the basic mechanism for commu-
nication in highly dynamic networks, there are a number
of specific parameters that need to be properly adapted to
the network conditions to ensure good throughput. The im-
plementation in [11] uses TCP for transport between di-
rect neighbors. Such method is not suited here since the
robot movements cause packet losses which are interpreted
as congestions losses by TCP, thereby severely reducing the
throughput. We adopt a window-based UDP mechanism for
transport control in this paper. We tune the throughput rates
of the sources based on the connection type such as direct,
multiple hop or through-time using the experimental data.

The organization of this paper is as follows. The concept
of connectivity-through-time is described in Section II. The
CTIME implementation of the protocol based on this con-
cept is described in Section III. Experimental results based
on the implementation including settings for various param-
eters are described in IV.

II. CONNECTIVITY-THROUGH-TIME CONCEPT

Let the graph G(t) = (V, E(t)) represent the connectiv-
ity of the network at time t such that node v ∈ V represents
a robot and edge (u, v) ∈ E(t) represents that the nodes
u and v are in direct wireless communication. At time t, a
path from node s to d in G(t) represents a multi-hop net-
work connection since a message can be routed along nodes
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Fig. 3. Network of three nodes.

of the path. If this path persists for a time interval [T1, T2]
a message with the end-to-end delay of T2 − T1 can be suc-
cessfully delivered from s to d. On the other hand, if there
is no path from s to d in G(t) for any t, it does not neces-
sarily mean that a message cannot be delivered. To illustrate
this consider Figures 1-3 which show a team of three mobile
robots. Initially, the robots s and i are directly connected.
Then i moves away from s and all three robots are discon-
nected. Finally, i moves within the range of d and hence is
connected to it. A message sent from s at time t1 can be sent
to i initially where it can be buffered and then delivered to
d at time t3. Essentially, the movements of i are utilized to
deliver the message to d.

To discuss the performance of a protocol that achieves
such delivery we need to identify a reasonable performance
criterion. Since the topology is dynamic, it is too weak to
expect that a datagram be delivered from s to d only if they
are connected at some time (as is done in TORA [8], for
example). On the other hand, it is unreasonable to expect
messages to wait indefinitely long in the network; if d is not
reachable from s at all, flooding the messages could lead to
inordinate amounts of datagrams being generated, thereby
causing the denial of service between the nodes that are con-
nected. To address the issue, the concept of connectivity-
through-time was proposed in [10].

Let the topology changes occur at unique times, denoted
in increasing order by t1, t2, . . . , tk for ti ∈ [0, T ]. Note that
G(t) remains constant for all t ∈ [ti, ti+1) and is given by
G(ti). We define that s and d are 0-connected-through-time
for interval [TL, TH ] if they are connected in G(t) for some
t ∈ [TL, TH ]. Consider [TL, TH ] ⊂ (ti−1, ti+1) containing
ti. We define that s and d are 1-connected-through-time for
interval [TL, TH ] if
(a) they are 0-connected through-time for [TL, TH ], or
(b) there exists a node v such that: (i) s and v are connected
in G(ti), and (ii) v and d are connected in G(ti+1).
The time-path in [TL, TH ] is represented by the composi-
tion of path from s to v in G(ti), followed by time-edge
(v; ti, v; ti+1), and followed by path from v to s in G(ti+1).
The time interval TH−TL is called the hold-time of the path.
This definition is recursively applied to an interval contain-
ing more than one ti’s as follows. We define that s and d

are k-connected-through-time for interval [TL, TH ] contain-
ing t1, t2, . . . tk if they are

(a) 1-connected-through-time for [TL, t1), and
(b) (k − 1)-connected-through-time for [t1, TH ].

Then s and d are connected-through-time for interval
[TL, TH ] if they are k-connected-through-time. We consider
that each node v is connected to itself at all times through
time-edges denoted by (v; ti, v; ti+1).

One can visualize a time-expanded graph EG([0, T ]) =
(EV, EE) of G(t) as follows. For each interval [ti, ti+1):
(i) each v ∈ V of G(ti) corresponds to node (v; ti) in EV ;
and (ii) each edge (u, v) ∈ E(ti) of G(ti) is represented
by the edge (u; ti, v; ti+1) in EG([0, T ]). Additionally, for
a node v of V , we place the time-edge (v; ti, v; ti+1) for
each interval [ti, ti+1]. We define a time-path from s to d in
the expanded graph as a path such that time intervals of all
time-edges be (a) disjoint, and (b) their beginning times be
strictly increasing as we move along the path from s to d.
Thus a time-path typically consists of the usual graph paths
in G(ti)’s interconnected by time-edges. In Figure 3, the
time path is denoted by (s; t1, i; t1), (i; t1, i; t2), (i; t2, i; t3),
(i; t3, d; t3). The hold-time of a time-path is the sum of hold-
times of all its time-edges.

Intuitively speaking, if s and d are connected-through-
time in [0, T ], a datagram from s can be delivered to d

by transmitting along graph paths and buffering along the
time-edges for a time period given by the hold-time. Un-
der the conditions of infinite buffer sizes and bandwidths,
the throughput of the network is related to the connectivity-
through-time in that a message can be delivered from node
s to d if and only if they are connected through time. Since
the time-connectivity needed to deliver a particular message
is not known, packets must be buffered at all possible nodes
waiting for new connections to be made.

There are two practical considerations in implementing
the above approach. First, the nodes have finite buffers and
packets cannot be indefinitely stored. Second, the transmis-
sion time is non-zero and could be significant for newly
made connections. As a result, not all messages in the
buffers may be delivered during the time a connection is
available. We parameterize the packets delivery along the
connectivity-through-time with two parameters, time-to-live
and minimum-connection time. The first parameter specifies
the time during which the current message is useful. For
example, the location information of a moving robot is ob-
solete after certain time. So we delete the messages from the
buffers after the expiry of their time-to-live values. Then
packets with appropriate time-to-live value can be deliv-
ered along a time-path with sufficient minimum-connection
time. Note that the minimum-connection time depends on
the robot movements and time-to-live is a protocol parame-
ter.
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III. CTIME-PROTOCOL

The overall idea of this protocol is to track the connectiv-
ity and route the packets by suitably buffering them if there
is no path to the destination. Each network node acts as a
router in delivering the messages. The source nodes decom-
pose the messages as UDP datagrams and then send them
over the network. The received datagrams are reassembled
at the destination. This protocol is specified by two vari-
ables time-to-live and minimum-connection time both deter-
mined empirically. Each packet is given the same time-to-
live value. The minimum-connection time is assumed to be
sufficient to clear the buffered packets.

The CTIME protocol is implemented using three main
components implemented as daemons as shown in Figure
4.
(a) Connectivity Computation: The direct and multiple-hop
connectivity at each node is continually updated in response
to the I-am-here datagrams broadcast periodically by each
node.
(b) Message Routing: The messages are decomposed into
UDP datagrams and routed by suitably buffering as needed.
(c) Message Transport: Packet losses, throughput rates and
duplicates are handled by using a window-based mechanism
akin to TCP but adapted to the current environment.

A. Connectivity Computation

Each node v maintains a list of direct neighbors DN(v)
that it is in direct contact with and list of multiple hop neigh-
bors MN(v) that it is connected via other nodes. Each node
periodically broadcasts an I-am-here UDP broadcast packet,
which is heard by all nodes within the direct range. This
packet includes the list of all direct neighbors as well as mul-
tiple hop neighbors. Using these messages from the neigh-
bors, each node computes its direct and multi-hop neighbors
using the distributed transitive closure algorithm. This in-
formation is periodically updated as the I-am-here messages
from other nodes are received. The counting to infinity prob-
lem is avoided by not sending the connectivity information

to its original source as is usually done.

B. Routing

The message at a source node is decomposed into fixed
sized datagrams, which are routed along the nodes. The
datagrams are written to the local routing daemon. The rout-
ing module also receives packets from other nodes to be
routed or buffered. The packets targeted to the local node
are simply sent to the send/receive module. For other data-
grams if a route to destination exits, then it is sent along the
known path by writing it to the next node on the path to des-
tination. That is, if the destination is directly connected, it is
sent to it, and if not, it is written to the next node on the path
to destination. If no path to the destination exists, then it is
buffered locally if not already buffered and then is broadcast
to all its immediate neighbors. When new connections are
made, this module examines the list of buffered packets and
routes them as above. Also, the buffered packets are peri-
odically examined and those that outlived their time-to-live
values are simply deleted.

C. Transport Method

The transport module at the source generates UDP data-
grams from the message and keeps track of packets that have
not been acknowledged. It maintains a buffer of unacknowl-
edged packets and sends them to the router module at the
appropriate rates as described below. It also resends the un-
acknowledged packets after a time out period.

A rate control mechanism is used for sending the packets
to the appropriate nodes. We propose a UDP-based method
using a simple window-based flow control strategy. Each
node maintains a window-size w and window-time Tw to
compute its throughput in terms of the number of packets
sent during Tw. The preference of this method over TCP for
transport is dictated by the following considerations:
(a) High Physical-Layer Losses: The usual implementa-
tion of congestion control is not suited for this environment
due to high packet loss and low probability of simultaneous
transmissions at the physical layer. The usual TCP interprets
the physical layer losses as congestion signals and reduces
its throughput. In the current scenario, however, the oppo-
site is needed: the throughput must be increased to account
for packet loss.
(b) Graceful disconnects: Due to high rate of disconnects,
TCP based method will wait for connection time out.
(c) Application-Level Tuning: Most TCP parameters are not
available to be tuned to suit the application without the ker-
nel modification. For example, it is not easy to select the
congestion window size based on the current connection pa-
rameters.

At each source, we specify the throughput rate depending
on the connectivity to destination. We collected throughput
rates at the source and destination which showed a unimodal
behavior (akin to those used in TCP models [7], [6]). In
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Fig. 5. Stationary nodes: Destination throughput (Mbps) and percentage
loss versus source sending rate (along X-axis in Mbps) for direct con-
nections in top and bottom plots, respectively.

Figure 5, we plot the receiver throughput and packet loss as
functions of sending rate while both robots are stationary. It
clearly shows that maximum throughput is achieved in the
vicinity of sending rate of 0.8Mbps. Below this value the
losses are low but so is the throughput at the destination and
above this value the losses increase rapidly thereby reducing
the useful throughput at the destination. It is interesting to
note that the highest throughput is achieved under small but
non-zero loss rate. When robots are in motion, there are
somewhat higher losses and lower throughput. We choose
the appropriate sending rate for direct connections based on
whether the robots are moving or not.

When transmitting directly between two robots, we
achieved comparable throughput with TCP byte-stream con-
nection. However, there is a significant reduction in the over-
all throughput when packets are routed via other robots, be-
cause (a) same physical channel is used for two connections
at the intermediate node thereby reducing the available raw
bandwidth to at most half the peak; and (b) the overheads of
routing introduce delays thereby further reducing the band-
width. Note that TCP is not capable of sending packets using
other nodes as routers. Generally TCP only needs to take
care of the transport at the two ends, while the intermedi-
ate nodes in CTIME protocol have much more complicated
transport controls to ensure reliable delivery. Throughput at
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the destination as a function of source sending rate is shown
in Figure 6 when the packets are routed via an intermediate
node. This plot also shows unimodal behavior but at signifi-
cantly lower source rate compared to direct connection.

In CTIME, we apply the direct sending rate (a) in trans-
missions to the destination when directly reachable , or (b) in
broadcasting if the destination is not reachable. If the desti-
nation is reachable via multiple hops, the lower sending rate
is employed as per the observations shown in Figure 6.

Packet acknowledgments are sent from the destination to-
ward the source to clear out the packets that have been re-
ceived by the destination. The router modules examines
the buffer upon receiving an acknowledgment packet and
deletes the corresponding packet if it exists in the buffer.
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IV. EXPERIMENTAL RESULTS

The protocol is implemented in C++ under Linux OS us-
ing socket-level programming. The testing is carried out on
a team of four Mini ATRV mobile robots equipped with
802.11 wireless cards. We describe experimental results
for a complicated scenario to illustrate the salient features
of CTIME (more scenarios and details of implementation
can be found at at www.cesar.ornl.gov/∼nrao). Here mes-
sages are delivered between source and destination which
are never connected to each other even via multiple hops. As
shown in Figure 7, this scenario has three stages. First, the
connection exists only between the source and intermediate
node. This connection breaks in the second stage where the
intermediate node is the only active node performing broad-
casts. In the third stage, the connection between the interme-
diate node and destination comes up. In the left plot of Fig-
ure 7, the datagrams are sent multiple times from the source
since the destination is not reachable at any time. In the right
plot of Figure 7, the datagrams are shown to be received
and retransmitted by the the intermediate node. The corre-
sponding average throughput is shown in Figure 8, where the
left plot shows throughputs at source and destination only,
and the right plot additionally shows the throughputs corre-
sponding to reception and transmission at the intermediate
node. Observe that throughput at the destination is almost
the same as at intermediate node. The explanation for this
observation is that the two hop connections never exist at the
same time so that each of them has the exclusive bandwidth
utilization at different times.

V. CONCLUSIONS

By utilizing the connectivity-through-time concepts we
propose a class of protocols that exploit the robot move-
ments to go beyond the traditional notions of connectivity.
Our protocols enable the formation of ad hoc networks of
mobile robots without the infrastructure of access points by
utilizing the robots as routers. We implemented CTIME pro-
tocol based on these principles on RWI MiniATRV mobile
robots using UDP with window-based flow control that is
tuned to the nature of connections. There are several com-
ponents of the proposed protocol and its implementation that
require future work. On-line optimization of time-to-live pa-
rameters and smooth adaptation of the source sending rates
would be of future interest. The presented protocol realizes
a flat network in which the physical medium is shared by
all nodes within the range. The intended application is for
small teams of robots, typically less than 10. Such flat net-
work with shared medium can severely limit the capacity of
larger networks [5]. A hierarchical approach might be in-
vestigated for such applications. The open question here is
to exploit the time-connectivity in such a hierarchical net-
work. Another future direction is to make the protocol com-
pletely automatic so that various parameter values are adap-
tively learned.
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